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Motivation

v

We want to identify distinct, “high-quality”, local minimizers of

minimize f(x)
I<x<u
x € R"

v

High-quality can be measured by more than the objective.

v

Derivatives of f may or may not be available.

v

The simulation f is likely using parallel resources, but it does not
utilize the entire machine.
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Why concurrency? Tiled QR example
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Global optimization is difficult

Theorem (T6rn and Zilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on
a domain D if and only if the algorithm generates iterates that are
dense in D.
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Global optimization is difficult

Theorem (T6rn and Zilinskas, Global Optimization, 1989)

An algorithm converges to the global minimum of any continuous f on
a domain D if and only if the algorithm generates iterates that are
dense in D.

» Either assume additional properties about the problem
» convex f

separable f

finite domain D

concurrent evaluations of f

vyYyy

» Or possibly wait a long time (or forever)

The theory can be more than merely checking that a method generates
iterates which are dense in the domain.

An algorithm must trade-off between “refinement” and “exploration”.
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Multistart Methods

Given some local optimization routine L:

Algorithm 1: General Multistart

for k=1,2,... do
Evaluate f at N points drawn from D

Start L at some set (possibly empty) of previously evaluated points

» Get to use problem specific local optimization routines.

» Possibly multiple levels of parallelism (objective, local method, global
method); L may involve many sequential evaluations of f...

» Which points should start runs?

» If resources are limited, how should points from each run receive
priority?

> Ideally, only one run is started for each minima.
» Exploring by sampling. Refining with L.



Multi-Level Single Linkage

Given some local optimization routine L:

Algorithm 2: MLSL

for k=1,2,... do
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Multi-Level Single Linkage

Given some local optimization routine L:

Algorithm 2: MLSL

for k=1,2,... do
Sample f at N random points drawn uniformly from D
Start L at all sample points x:
» that has yet to start a run

» Bx : |lx — x| < rk and f(x;) < f(x)

[Rinnooy Kan and Timmer, Mathematical Programming, 39(1):57—-78, 1987]

» Doesn’t naturally translate when evaluations of 7 are limited

» Ignores some points when deciding where to start L
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Multi-Level Single Linkage
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Multi-Level Single Linkage
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Multi-Level Single Linkage
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Multi-Level Single Linkage
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Multi-Level Single Linkage
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Multi-Level Single Linkage
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Multi-Level Single Linkage
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Multi-Level Single Linkage

» f € C!, with local minima in the interior of D, and the distance
between these minima is bounded away from zero.

> L is strictly descent and converges to a minimum (not a stationary
point).

R D TR G

a 9 of 26



Multi-Level Single Linkage

» f € C!, with local minima in the interior of D, and the distance
between these minima is bounded away from zero.

> L is strictly descent and converges to a minimum (not a stationary
point).

Fe = %\/r (1 + g) vol (D) U'(l)jka 1)

Theorem
If . — 0, all local minima will be found almost surely.

°‘,' 9 of 26



Multi-Level Single Linkage

» f € C!, with local minima in the interior of D, and the distance
between these minima is bounded away from zero.

> L is strictly descent and converges to a minimum (not a stationary
point).

Fe = %\/r (1 + g) vol (D) U'(l)jka 1)

Theorem
If . — 0, all local minima will be found almost surely.

If r is defined by (1) with o > 4, even if the sampling continues
forever, the total number of local searches started is finite almost surely.

o 9 of 26



POSMM

MLSL: (S2)—~(S4)
X e S

(S2) Ix € Sk with
[[1X = x|| < rk and f(x) < f(X)]
(S3) X has not started a local
optimization run

(S4) X is at least . from 0D and v
from known local minima
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POSMM

MLSL: (S2)—(S4)
X e S

(S1) Px € Ly with

[IIX = x|| < re and f(x) < f(X)]
(S2) Ix € Sk with

[II%X — x|| < r¢ and f(x) < f(X)]
(S3) X has not started a local

optimization run

(S4) X is at least . from 0D and v
from known local minima

POSMM: (S1)-(S4), (L1)—(L6)
X e Ly
(Ll) ﬂX € Ly
[II%x = x|l < r¢ and f(x) < f(X)]
(L2) Px € Sk with
[IIX — x|| < rx and f(x) < f(X)]
(L3) X has not started a local
optimization run
(L4) X is at least u from 0D and v
from known local minima
(L5) X is not in an active local
optimization run and has not
been ruled stationary
(L6) Jrk-descent path in Hy from
some x € Sy satisfying (S2-54)
to X
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POSMM

Iteration: 37; r_k: 0.589
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POSMM
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POSMM

Iteration: 99; r_k: 0.254
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Necessary:
» Honors a starting point
» Honors bound constraints

12 of 26



N
Properties of the local optimization method

Necessary:
» Honors a starting point

» Honors bound constraints

ORBIT satisfies these [Wild, Regis, Shoemaker, SIAM-JOSC, 2008]

BOBY QA satisfies these [Powell, 2009]

12 of 26



N
Properties of the local optimization method

Necessary:
» Honors a starting point

» Honors bound constraints

ORBIT satisfies these [Wild, Regis, Shoemaker, SIAM-JOSC, 2008]
BOBY QA satisfies these [Powell, 2009]

Possibly beneficial:

» Can return multiple points of interest

v

Reports solution quality/confidence at every iteration

v

Can avoid certain regions in the domain

» Uses a history of past evaluations of f

v

Uses additional points mid-run



APOSSM Theory

Given the same assumptions as MLSL, APOSSM will start a finite
number of local optimization runs with probability 1.
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Given the same assumptions as MLSL, APOSSM will start a finite
number of local optimization runs with probability 1.

Assumption

There exists Ky < oo so that for any Ky consecutive iterations, there is
a positive (bounded away from zero) probability of evaluating a point
from the sample stream and each existing local optimization run.
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APOSSM Theory

Theorem

Given the same assumptions as MLSL, APOSSM will start a finite
number of local optimization runs with probability 1.

Assumption

There exists Ky < oo so that for any Ky consecutive iterations, there is
a positive (bounded away from zero) probability of evaluating a point
from the sample stream and each existing local optimization run.

Theorem

Each x* € X* will almost surely be either identified in a finite number of
evaluations or have a single local optimization run that is converging
asymptotically to it.
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Measuring Performance

GLODS Global & local optimization using direct search [Custédio, Madeira
(JOGO, 2014)]
Direct Serial DIRECT [D. Finkel's MATLAB code]
pVTDirect Parallel DIRECT [He, Watson, Sosonkina (TOMS, 2009)]
Random Uniform sampling over domain (as a baseline)
POSMM
» Local optimization method
» ORBIT [wild, Regis, & Shoemaker (SIAM JOSC, 2008)]
» BOBYQA [Powell, 2009]
> Initial sample size: 10n

» Each method evaluates Direct’s 2n + 1 initial points.

& 14 of 26
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(A)POSMM Manager

Algorithm 3: Manager Logic

while k < fevalmax do
MPI.recv(MPI.LANY _SOURCE)

if Received from Custodian then
Check Hy

| Add new point to Q,
if Received from Worker then
Update Hy
Possibly get a Custodian working on the next point
Run decide_where_to_start
| Possibly update Q;
if sync=False OR All Workers/Custodians are done then
| Give from Q. or Rs to available worker(s)




POSMM

MLSL: (S2)-(S4)
X € S

(S1) #x € Ly with

[II%X — x|| < re and f(x) < f(X)]
(S2) $x € Sk with

[I%X — x|| < rx and f(x) < f(X)]
(S3) X has not started a local

optimization run

(S4) X is at least u from 0D and v
from known local minima

POSMM: (S1)—(S4), (L1)—(L6)
X € Ly
(Ll) ﬂX € Ly
1% = x|l < re and f(x) < f(X)]
(L2) $x € Sk with
(1% = x|l < re and f(x) < f(X)]
(L3) X has not started a local
optimization run

(L4) % is at least u from 0D and v
from known local minima

(L5) %X is not in an active local
optimization run and has not
been ruled stationary

(L6) Jr-descent path in Hj from
some x € Sy satisfying (S2-54)
to X



Measuring Performance

Notation:

Let X* be the set of all local minima of f.
Let 7]y be the ith smallest value {f(x*)|x* € X*}.

Let x(*,.) be the element of X* corresponding to the value f(’f)

The global minimum has been found at a level 7 > 0 at batch k if an
algorithm it has found a point X satisfying:

F(2) — 1y < (1=7) (FOo) = 7).

where Xxj is the starting point for problem p.
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Measuring Performance

Notation:

Let X* be the set of all local minima of f.
Let 7]y be the ith smallest value {f(x*)|x* € X*}.
Let x(*,.) be the element of X* corresponding to the value f(’f)

The j best local minima have been found at a level 7 > 0 at batch k if:
Hx(*l), . ,x(*kl)} ﬂ{x(*,.) : Ix € Hy with Hx—x(*,.)H < r,,('r)H =/j—-1

o N {3 - 3x € Hewith x| < | =i-i+ 1,

where j and j are the smallest and largest integers such that

n/Tvol(D)I(5+1)
e

fUif) =15 = f&f) and where r,(T) =

o 18 of 26



Problems considered

GKLS problem generator [Gaviano et al., “Algorithm 829” (TOMS, 2003)]

v

600 synthetic problems with known local minima

v

10 local minima in the unit cube with a unique global minimum

v

100 problems for each dimension

v

5 replications (different seeds) for each problem

5000 evaluations

v

19 of 26
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Within 1/ % of 3 best minima
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Within 1/ % of 7 best minima

Data Profiles
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Data Profiles (increasing workers)
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Within 1/ % of 3 best minima
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Data Profiles (increasing workers)

Within 1/ % of 3 best minima
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Data Profiles (vs random)

Within 1/ % of 10 best minima
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Data Profiles (vs random)
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Data Profiles (vs random)

Within 1/ % of 5 best minima
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Data Profiles (vs random)
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Data Profiles (vs random)
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Data Profiles (forcing runs)
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 —
Data Profiles (forcing runs)

Within 1/ % of 3 best minima
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Closing Remarks

» Concurrent function evaluations can locate multiple minima while
efficiently finding a global minimum.
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Closing Remarks

» Concurrent function evaluations can locate multiple minima while
efficiently finding a global minimum.

» The ability to find many minima scales well with the number of
workers.

Questions:
» Finding (or designing) the best local solver for our framework?

» Best way to process the queue?



(A)POSMM Manager

Algorithm 3: Manager Logic

while k < fevalmax do
MPl.recv(MPI.LANY _SOURCE)

if Received from Custodian then
Check Hy

| Add new point to Q,

if Received from Worker then
Update Hy
Possibly get a Custodian working on the next point
Run decide_where_to_start

| Possibly update @,
if sync=False OR All Workers/Custodians are done then
| Give from Q, or Rs to available worker(s)
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Pausing runs
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